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Abstract
We analyze the Lotka–Volterra n prey-1 predator system with no direct interspecific
interaction between prey species, in which every prey species undergoes the effect
of apparent competition via a single shared predator with all other prey species. We
prove that the considered system necessarily has a globally asymptotically stable
equilibrium, and we find the necessary and sufficient condition to determine which
of feasible equilibria becomes asymptotically stable. Such an asymptotically stable
equilibrium shows which prey species goes extinct or persists, and we investigate
the composition of persistent prey species at the equilibrium apparent competition
system. Making use of the results, we discuss the transition of apparent competition
systemwith a persistent single shared predator through the extermination and invasion
of prey species. Our results imply that the long-lasting apparent competition system
with a persistent single shared predator would tend toward an implicit functional
homogenization in coexisting prey species, or would transfer to a 1 prey-1 predator
system in which the predator must be observed as a specialist (monophagy).

Keywords Apparent competition · Species invasion · Species extinction · Functional
homogenization

Mathematics Subject Classification 92D40 · 92D25 · 92B05 · 37N25

1 Introduction

The interspecific interaction in a food web is made up of direct and indirect
effects (Begon et al. 1996). Direct effect includes competition, predation and sym-
biosis. Indirect effect is defined as an effect on a species from another which has no
direct interaction with it. The indirect effect between two species could occur through
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interactions with the other species in the food web. Apparent competition is defined by
Holt (1977, 1984) as a negative indirect effect between two prey species which have
a shared predator and have no direct interaction between them. Jeffries and Lawton
(1984, 1985) called the corresponding indirect effect the competition for enemy-free
space. In a system of one predator and its two prey species, one prey population plays
a roll of the bioresource to increase the predator population, so that the other prey
population can be regarded as indirectly affected by the former prey population even
if no direct interaction exists between them.

There have been lots of previous ecological works related to apparent competition,
in which the effect of predation on the diversity of competing prey species was mainly
considered (Chaneton and Bonsall 2000; Chase et al. 2002; Frost et al. 2016; Sheehy
et al. 2018; Stige et al. 2018; Gripenberg et al. 2019; Ng’weno et al. 2019). On the
other hand, as Holt and Bonsall (2017) clearly describes in the up-to-date review, the
“apparent competition” effect defined above has been accepted and it is used today for
the theoretical studies in a variety of contexts which transcend ecology. This can be
seen in the agricultural, medical and sociological scienceswith a variety of examples in
reality including pest control (Carvalheiro et al. 2008; Bompard et al. 2013; Jaworski
et al. 2015a, b), immune dynamics (King and Bonsall 2017), and epidemics (Cobey
and Lipsitch 2013) (also see the literatures cited in Holt and Lawton 1994; Holt 2023).

In nature, the members of a food web are always subjected to change on a long time
scale following species extinctions and invasions (Carlton and Geller 1993; Milner-
Gulland et al. 2003; Spaak et al. 2023). Morris et al. (2004) successfully demonstrated
the long-term apparent competition in natural communities of herbivorous insects,
and gave a suggestion that interactions mediated by shared natural enemies may be a
significant factor in structuring natural communities. In lots of theoretical researches
about the effect of the species extermination or introduction on the community struc-
ture, community assembly models or “global models” has been constructed, analyzed
and investigated mainly to consider the stability of structure (Abrams 1996; Drossel
et al. 2001; Chase et al. 2002; Fowler and Lindström 2002; Quince et al. 2005).

In contrast to almost all previous works on the population dynamics model of the
shared predator(s) and two prey species with a variety of interspecific reaction under
apparent competition (for example, Holt et al. 1994; Abrams et al. 1998; Schreiber
2004; McPeek 2019; Picot et al. 2019), we analyze the Lotka–Volterra n prey-1 preda-
tor system in which the predation is incorporated by the mass-action type of reaction
term between prey and predator, while prey species have no direct interspecific inter-
action between them. Prey species have only indirect interactions, that is, apparent
competition via the shared single predator. Focusing on the effect of apparent com-
petition between prey species, we do not introduce any interspecific direct reaction
in our modeling other than the predation between the shared single predator and
every prey, differently from recent biological or theoretical/mathematical works on
the apparent competition in relation to some other factors relevant to the persistence
of prey species. We consider the system with a generally given per capita growth rate
of prey, and derive the necessary and sufficient condition to determine which of feasi-
ble equilibria becomes asymptotically stable. Such an asymptotic stable equilibrium
determines which prey species goes extinct or persists, and enables us to investigate
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the composition of persistent prey species at the equilibrium apparent competition sys-
tem. Making use of the obtained results, we discuss the transition of such an apparent
competition system with a persistent single shared predator through the extermination
and invasion of prey species. Then we find that the long-term apparent competition
system with a persistent single shared predator would tend to lead a kind of specific
homogenization in prey species, or would transfer to a 1 prey-1 predator system in
which the predator must be observed as a specialist (monophagy).

2 Model

We consider the following n prey-1 predator system of Lotka–Volterra type with the
mass-action terms for the predation:

⎧
⎪⎪⎨

⎪⎪⎩

dHi

dt
= gi (Hi )Hi − bi Hi P (i = 1, 2, . . . , n);

dP

dt
= −δP +

n∑

i=1

cibi Hi P,
(1)

where Hi is the population size (e.g., density) of prey i , P the population size of
predator, bi the predation rate for prey i , δ the predator’s natural death rate, and ci
the energy conversion rate of the predation for prey i . The function gi (Hi ) is the per
capita growth rate of prey i when its population size is Hi , which is now assumed to
satisfy the following features for each i = 1, 2, . . . , n:

• gi (x) is strictly decreasing and continuous for x ≥ 0, and differentiable for x > 0;
• gi (0) = ri > 0;
• gi (Ki ) = 0 for a positive value Ki > 0.

The per capita growth rate of every prey follows an intraspecific negative density
effect. Parameters ri and Ki define the intrinsic growth rate and the carrying capacity
of prey i respectively. One of classic choices for the function gi (Hi ) is a linear one:
gi (Hi ) = ri −βi Hi and Ki = ri/βi with the coefficient of intraspecific density effect
β, then the population of prey i follows a sort of well-known logistic growth (Holt
1977; Kr̆ivan 2014; Seno et al. 2020).

In this paper, we analyze the system (1) with the general function gi (Hi ) satisfying
the above mathematical features. Hence note that our arguments and results in this
paper are valid even when the functions gi (Hi ) (i = 1, 2, . . . , n) are given by different
formulas, as long as they all satisfy the abovemathematical features.We should remark
that the same system as (1) with such the general function gi (Hi ) was considered
primarily in Holt (1977) to a extent, and there were shown the results matching some
of ours in this paper. In this sense, we are going to revisit, refine, and systematically
reconsider it here with some extended concepts and hopefully wider applicability.

Prey species have no direct interspecific interaction. When the shared predator is
absent, each prey population grows independently of any other prey population. Then,
since gi (H) > 0 for any H ∈ (0, Ki ] while gi (H) < 0 for any H > Ki , it is easily
seen that, when the shared predator is absent, every prey population size Hi (t) from an
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initial value Hi (0) > 0 monotonically approaches Ki as time passes, and Hi (t) → Ki

as t → ∞. Thus, as an ecologically reasonable setup, we shall consider the system
(1) with the initial condition such that

P(0) > 0; 0 < Hi (0) ≤ Ki (i = 1, 2, . . . , n), (2)

since Ki is the carrying capacity for prey i . Then, when the shared predator is absent,
Hi (t) monotonically increases to approach Ki as time passes, and Hi (t) → Ki as
t → ∞. Further it is easily shown that Hi (t) ∈ (0, Ki ) and P(t) > 0 for any t ≥ 0
(Appendix A):

Lemma 1 The solution of (1) with the initial condition (2) always stays in the domain

D := {(H1, H2, . . . , Hn, P) | P > 0, 0 < Hi ≤ Ki (i = 1, 2, . . . , n)
}
. (3)

In our model, without loss of generality, prey species are numbered in the following
order, in the same way as for the model with the logistic growth of prey populations
in Holt (1977); Seno et al. (2020):

r1
b1

≥ r2
b2

≥ · · · ≥ rn
bn

. (4)

3 Basic predator replacement rate

The net replacement rate or net reproduction rate is defined in ecology as the expected
number of mature females produced by a mature female over its lifetime (for example,
see Gotelli 2001). When it is less than one, the population size eventually decreases.
This definition obviously has a correspondence to what is called basic reproduction
number for the epidemic dynamics, which is defined as the expected number of new
cases of infection caused by an infective individual in a population consisting of sus-
ceptible contacts only (for a modern review about the definition, the translation, and
the practical application of basic reproduction number for the epidemic dynamics, see
Delamater et al. 2019). Making use of a similar mathematical concept with the defini-
tion of basic reproduction number, we shall define here the basic predator replacement
rate for the predator in the system (1).

Firstly for the 1 prey -1 predator system with prey species i

⎧
⎪⎪⎨

⎪⎪⎩

dHi

dt
= gi (Hi )Hi − bi Hi P;

dP

dt
= −δP + ci bi Hi P,

(5)

we can define the prey-specific basic predator replacement rate as

R0,i := 1

δ
sup
Hi

[
cibi Hi

] = 1

δ
ci bi Ki , (6)
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where 1/δ gives the expected lifetime of the predator in the system (1) and (5). The
prey-specific basic predator replacement rateR0,i means the supremum for the number
of predator’s offsprings produced by a single predator during the expected lifetime 1/δ
when the available prey is only of species i . Then, for the n prey-1 predator system
(1), we can define the basic predator replacement rate in the same way as

R[n]
0 := 1

δ
sup
{Hi }

n∑

i=1

cibi Hi =
n∑

i=1

1

δ
cibi Ki =

n∑

i=1

R0,i . (7)

These basic predator replacement rate is defined by the supremum for the net replace-
ment rate as well as the definition of basic reproduction number in relation to the
effective reproduction number about the epidemic dynamics (Seno 2022). The net
replacement rate depends on the temporal profile of prey densities {Hi } in the lifes-
pan of predator, so that it cannot be defined independently of their actual temporal
variation, while it is necessarily not beyond the basic predator replacement rate.

Note that the values {R0,i } do not necessarily follow the order corresponding to that
of prey species according to the value ri/bi assumed by (4). For example, it is possible
in our modeling thatR0,3 < R0,1 < R0,2 even when r1/b1 ≥ r2/b2 ≥ r3/b3.

4 Predator’s persistence

We can get the following result about the predator’s persistence for the n prey-1
predator system (1) (Appendix B; Fig. 1):

Theorem 1 Predator can persist if and only if R[n]
0 > 1. Otherwise it goes extinct.

This theorem implies that the predator tends to survive only when sufficiently many or
beneficial prey species are available. On the contrary, if the available prey species are
rather limited, or if all available prey species are rather poor as its foods, the predator
may go extinct. Moreover the extinction of the predator is most likely to be caused
by the extermination of the prey species which has the largest value ofR0,i , since the
extermination of such a prey species reduces the basic predator replacement rateR[n]

0
by the largest amount. Such a prey species could be regarded as a sort of “keystone
species” which is the most relevant for the shared predator’s persistence. On the other
hand, it is sufficient for the predator’s persistence that there is a prey species i with
the prey-specific basic predator replacement rate R0,i greater than 1, independently
of how many prey species are available for the predator.

From the aspect of predator’s invadability in a habitat with n preys available for the
predator, the condition R[n]

0 > 1 is necessary and sufficient for the invasion success.

The predator’s invasion fails ifR[n]
0 ≤ 1. In the same context, the predator’s invasion

is successful if R0,i > 1 for a prey species i , while it fails only if R0,k < 1 for all
available prey species k. Even when R0,i < 1 for all available n prey species in the
habitat, the invasion is successful if R[n]

0 > 1. This is the case where the predator
invades in a habitat with a sufficient number of preys all of which however have poor
quality for the predator’s reproduction.
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Fig. 1 A numerical result about the R[6]
0 -dependence (δ-dependence) of the equilibrium after a shared

predator’s invades into the system (1) with available six prey species (n = 6) which grow in the logistic
manner: gi (Hi ) = ri − βi Hi and Ki = ri /βi (i = 1, 2, . . . , 6). (a) Number of persistent prey species at
the equilibrium; (b) Equilibrium population size of predator and the relative total population size of all prey

species. ForR[6]
0 ≤ 1, the predator goes extinct, that is, P∗ = 0, while it coexists with all or some of prey

species at the equilibrium for R[6]
0 > 1. bi = 0.5; ci = 0.1; {ri } = {1.0, 0.8, 0.6, 0.4, 0.2, 0.1}; {βi } =

{0.08, 0.06, 0.04, 0.03, 0.02, 0.01}; δ = (1/R[6]
0
)

n∑

i=1

ci bi Ki = 3.71/R[6]
0 . The largest prey-specific basic

predator replacement rate is R0,3

When the predator persists, some prey species would go extinct due to the apparent
competition effect as seen in the numerical example of Fig. 1 about the system (1)
with six prey species growing in the logistic manner as gi (Hi ) = ri − βi Hi (i =
1, 2, . . . , 6), considered analytically in Seno et al. (2020), and numerically in Kr̆ivan
(2014). Hence it should be remarked that Theorem 1 does not necessarily show what
is called persistence mathematically defined for the solution of system (1) (as for the
mathematically defined persistence or related permanence, for example, see Hofbauer
and Sigmund 1998; Thieme 2003). In the following arguments, we will focus on
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the feature of the system (1) with respect to which prey species goes extinct or persists
with the persistent shared single predator.

5 Equilibriumwith persistent predator

Let us begin with considering the following type of equilibrium E∗[k] (k = 1, 2, . . . , n)

for the system (1) under the condition that R[n]
0 > 1 when the predator persists from

Theorem 1:

(H1, H2, . . . , Hn, P) = (H∗[k],1, H∗[k],2, . . . , H∗[k],k, 0, . . . , 0︸ ︷︷ ︸
n−k

, P∗[k]) (8)

with H∗[k],i ∈ (0, Ki ) (i = 1, 2, . . . , k) and P∗[k] > 0. From the equations of (1), the
equilibrium E∗[k] defined as (8) can be determined by

gi
(
H∗[k],i

) = bi P
∗[k];

k∑

i=1

H∗[k],i
Ki

R0,i = 1, (9)

that is,

H∗[k],i = g−1
i

(
bi P

∗[k]
); Gk(P

∗[k]) :=
k∑

i=1

g−1
i

(
bi P∗[k]

)

Ki
R0,i = 1, (10)

where g−1
i is the inverse function of gi . By the later Lemma 4 and Theorem 3 in this

section, we shall show that only the equilibrium E∗[k] of the type given by (8) can be
asymptotically stable for the system (1).

First we can prove the following lemma about the existence of the equilibrium E∗[k]
defined by (8) (Appendix C):

Lemma 2 The equilibrium E∗[k] (k = 1, 2, . . . , n) defined by (8) uniquely exists in D
if and only if

Wk := Gk
( rk
bk

) =
k∑

i=1

g−1
i

( rk/bk
ri /bi

ri
)

Ki
R0,i < 1 < R[k]

0 =
k∑

i=1

R0,i = Gk(0). (11)

When it exists, it is satisfied that P∗[k] < rk/bk.

The latter result on the equilibrium predator population size P∗[k] has been shown also
in Holt (1977). From Lemma 2, if and only if Wn < 1 < R[n]

0 , exists the equilibrium
E∗[n] at which all prey species persist with the shared predator. Then, making use
of a Lyapunov function, we can obtain the following result on the stability of E∗[n]
(Appendix D):
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Theorem 2 If the equilibrium E∗[n] exists, it is globally asymptotically stable in D.

The corresponding result with prey species growing in the logistic manner as gi (Hi ) =
ri−βi Hi (i = 1, 2, . . . , n) has been shownwith a Lyapunov function inKr̆ivan (2014);
Seno et al. (2020). Theorem 2 indicates that the system (1) is what is mathematically
called persistent if the equilibrium E∗[n] exists as an interior equilibrium in D (as for
the definition, for example, see Hofbauer and Sigmund 1998; Thieme 2003).

In contrast, we can obtain the following result on the local stability for the
equilibrium E∗[k] with k < n (Appendix E):

Lemma 3 The equilibrium E∗[k] (k < n) defined by (8) exists, and it is locally
asymptotically stable if and only if Wk < 1 ≤ Wk+1. Moreover it is satisfied that
P∗[k] ≥ rk+1/bk+1 at the locally asymptotically stable equilibrium E∗[k].

Then remark that the equilibrium E∗[k] (k < n) exists and is unstable ifWk+1 < 1. Fur-
therwecanfind the followingdistinct result on theuniqueness of locally asymptotically
stable equilibrium (Appendix F):

Lemma 4 If Wk < 1 ≤ Wk+1 (k < n), only the equilibrium E∗[k] can be locally
asymptotically stable, while any other equilibrium in D is unstable.

Note that the results of Theorem 2, Lemmas 3 and 4 are consistent because of the
non-decreasing monotonicity of the sequence {Wk} and the relation between Wk and
R[k]

0 shown by Lemmas 6 and 7 in Appendix C. Therefore, these results show that a
locally asymptotically stable equilibrium always and uniquely exists.

Finally we can prove the following result about the globally asymptotically stable
equilibrium (Appendix G):

Theorem 3 When R[n]
0 > 1, globally asymptotically stable is the equilibrium E∗[s] in

D with s such that

s := max
{
� ∈ {1, 2, . . . , n} | W� < 1 < R[�]

0

}
. (12)

The result of Theorem 3 corresponds to that of Theorem 2 about the equilibrium E∗[s]
when s = n as defined by (12). However the proof of Appendix G for Theorem 3 is
different from that of Appendix D for Theorem 2 in a significant point that the former
needed the condition for the local stability of E∗[s] in order to construct a Lyapunov
function.

6 Which prey species goes extinct or persists

From Theorems 2 and 3, we can now conclude that the Lotka–Volterra apparent
competition system (1) with a persistent shared single predator necessarily has a
unique globally asymptotically stable equilibrium E∗[s] with s determined by (12),

where it holds that Ws < 1 ≤ Ws+1 < R[s]
0 if s < n, and Wn < 1 < R[n]

0 if s = n.
This conclusion indicates that it is determined by the distribution of {Wk} which prey
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Fig. 2 Schematic examples for the distribution of {Wk } that determines the persistent prey species at the
equilibrium about the system (1) with available six prey species (n = 6). a Only prey species 1 persists
with the persistent predator; b Prey species 1, 2, and 3 persist and the others go extinct with the persistent
predator; c All prey species persist with the persistent predator; d Predator goes extinct and all prey species
persist

species goes extinct or persists in the Lotka–Volterra apparent competition system (1)
as schematically illustrated in Fig. 2. Especially, the prey species 1 in the numbering
defined by (4) must persist with the predator when the predator persists withR[n]

0 > 1
(Theorem 1):

Corollary 1 When the predator persists in the system (1) with R[n]
0 > 1, prey species

1 necessarily persists with the predator.

From the definitions of s,Ws , andR
[s]
0 , the number of persistent prey species s can

be large only with relatively small values of R0,i for i = 1, 2, . . . , s. This is because
a large value ofR0,� for some � makes the value ofR[k]

0 for k ≥ � large, and then the
number s is likely to be relatively near �. Thus, roughly saying, the number of persistent
prey species with a single shared predator becomes large when available prey species
provide relatively small values of the basic predator replacement rate for the predator,
that is, when they are relatively poor foods for the predator’s reproduction. While this
result would indicate that the predator needs a number of different prey species for its
persistence because those prey species are poor, it may be regarded as a consequence
of the apparent competition in which the effect of apparent competition is sufficiently
weak for every persistent prey species because they can keep the predator population
size small with their poor contribution to the predator’s reproduction.

On the other hand, from the result of Theorem 3 with Corollary 1, we can find the
following condition that all prey species except prey species 1 go extinct when the
predator persists withR[n]

0 > 1 (Theorem 1):

Corollary 2 If and only if W2 ≥ 1, all prey species except prey species 1 go extinct.

Remark that the condition W2 ≥ 1 is sufficient to have R[1]
0 > 1 from Lemma 7 in

Appendix C. The predator necessarily persists withR[n]
0 > 1 ifW2 ≥ 1. We note that

the condition W2 ≥ 1 requires r2/b2 < r1/b1 since W2 = W1 = 0 if r2/b2 = r1/b1
as shown in this section. The condition W2 ≥ 1 can be equivalently written as

R0,1 ≥ K1

g−1
1

( r2/b2
r1/b1

r1
) (> 1),
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Fig. 3 A numerical result about the R[6]
0 -dependence (δ-dependence) of the number of persistent prey

species at the equilibrium and the values of {Wk }, corresponding to the numerical calculation of Fig. 1
about the system (1) with available six prey species (n = 6)

which indicates that if prey species 1 provides a sufficiently large prey-specific basic
predator replacement rate for the predator, the apparent competition causes the extinc-
tion of all other prey species. It may be regarded as a consequence of the overpredation
by the predator sustained by a particularly rich prey species (i.e., prey species 1 indexed
as (4) in our modeling). At such an equilibrium, the predator appears to be a specialist
(monophagy) which uses only one prey species. Such the apparent exclusion of prey
species other than a particular prey species may be referred as “dynamic monophagy”
(Holt and Lawton 1994; Frank van Veen et al. 2006).

As a specific case where prey species 1 follows a logistic growth with g1(H1) =
r1 − β1H1 and K1 = r1/β1, the above condition becomes

R0,1 ≥
(
1 − r2/b2

r1/b1

)−1
or equivalently

r2
b2

≤
(
1 − 1

R0,1

) r1
b1

.

Such a specific case is shown by the numerical example in Fig. 1, and by the
corresponding numerical illustration in Fig. 3 according to the distribution of {Wk}.

7 Prey species of common destiny

In this section, we argue the following special feature of the system (1):

Corollary 3 Prey species k1 and k2 with rk1/bk1 = rk2/bk2 (k1 �= k2) have a common
destiny on their persistence in the system (1) withR[n]

0 > 1when the predator persists:
They persist or alternatively go extinct together.

Now let k1 = �, k2 = � + 1, and r�/b� = r�+1/b�+1. From Lemma 3, the equilibrium
E∗[�] cannot be asymptotically stable even if it exists since it does not hold that W� <

1 ≤ W�+1 because W� = W�+1 when r�/b� = r�+1/b�+1 (Lemma 6 in Appendix
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C). Hence, when the predator persists with R[n]
0 > 1, the number of persistent prey

species s defined by (12) must be greater or alternatively smaller than �, while s may
be � + 1. From this argument, the result of Corollary 3 holds. It is interesting that two
different prey species have a common destiny on their persistence which is determined
only by the value of r•/b• independently of any other parameters.

For an illustrative example about this special feature, let us consider the system (1)
withR[n]

0 > 1 and

r1
b1

= r2
b2

= · · · = r�
b�

>
r�+1

b�+1
≥ r�+2

b�+2
· · · ≥ rn

bn
,

where 1 < � < n. From Lemma 6 in Appendix C, we now have

W1 = W2 = · · · = W� = 0 < W�+1 ≤ W�+2 ≤ · · · ≤ Wn .

In this case, from Theorems 2 and 3 with Lemma 4, prey species 1 to � necessarily
persist, and the number of persistent prey species s is greater than � if W�+1 < 1, or
equal to � if W�+1 ≥ 1.

For the other example with

r1
b1

>
r2
b2

> · · · >
r�
b�

= r�+1

b�+1
= r�+2

b�+2
· · · = rn

bn
,

we have

W1 < W2 < · · · < W� = W�+1 = W�+2 = · · · = Wn .

In this case, prey species 1 necessarily persist from Corollary 2, and the number of
persistent prey species s is less than � if W� ≥ 1, or equal to n if W� < 1 because of
Theorem 2 with Lemma 2.

As the extremal case, we may consider the system (1) with R[n]
0 > 1 and ri/bi =

r/b for all i = 1, 2, . . . , n. Since Wk = 0 for all k = 1, 2, . . . , n, Theorem 2 with
Lemma 2 indicates that all available prey species persist with the persistent predator,
which can be regarded as the case of s = n.

8 State transition by prey extermination/invasion

In this section, we consider the state transition by the extermination of a persistent
prey species or by the invasion of an alien prey species from an asymptotically stable
coexistent equilibrium with the persistent predator and more than one persistent prey
species. In this paper, the ‘extinction’means a consequence of the population dynamics
between prey and predator, whereas the ‘extermination’ may be caused by the other
kinetics, for example, by a human activity (e.g., harvesting, culling, or pollution) or by
a stochastic ecological disturbance/disaster (e.g., tempest, epidemics, or fire). In amore
mathematical sense, the Mextermination’ of a prey species results in the reduction of
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Fig. 4 Temporal variation of population sizes after the extermination of a prey species at t =
ts = 600 from the coexistent equilibrium with a shared predator and six prey species which
grow in the logistic manner: gi (Hi ) = ri − βi Hi and Ki = ri /βi (i = 1, 2, . . . , 6).
(a) Prey H1 is exterminated. No secondary extinction occurs; (b) Prey H2 is exterminated.
The shared predator goes extinct after the extermination. δ = 0.48; bi = 0.001; βi =
0.001; {ci } = {0.5, 0.8, 0.8, 0.8, 0.8, 0.8}; {ri } = {0.175, 0.16, 0.145, 0.13, 0.115, 0.1}; {R0,i } =
{0.1823, 0.2667, 0.2417, 0.2167, 0.1917, 0.1667}; {Wi } = {0, 0.0156, 0.0563, 0.1219, 0.2125, 0.3281};
R[6]

0 = 1.2656; Hi (0) = ri /βi ; P(0) = 1.0

the dimension of system from n + 1 to n, while the ‘extinction’ must be necessarily
considered for the system (1) of n+1 dimension. In contrast, the ‘invasion’ of an alien
prey species results in the increase of the dimension of system from n to n + 1, and
then the population dynamics follow the system (1) of n + 1 dimension.

First we can obtain the following theorem on the influence of a prey species
extermination (Appendix H):

Theorem 4 If a prey species is exterminated from an asymptotically stable coexistent
equilibrium, the system transfers to a state at which the predator coexists with the rest
of prey species or alternatively goes extinct.

This theorem indicates that the extermination of a prey species from the coexistent
equilibrium does not cause any secondary extinction of other prey species even with
the apparent competition. As numerically exemplified by Fig. 4, it depends on the
prey-specific basic predator replacement rate of which prey species’ extermination
can lead to the extinction of predator. The prey species with a large prey-specific
basic predator replacement rate could be the keystone prey species for the predator’s
persistence, as indicated by Theorem 1. It does not necessarily match the order of prey
species defined by (4).

Next, we consider the state transition by the invasion of an alien prey species in
the coexistent equilibrium with a shared predator and its native prey species. From
Theorems 2 and 3, we find that the system may transfer to one of the following four
states after the invasion of an alien prey species (see Fig. 5):

• The alien prey goes extinct, and the system returns to the original state.
• No native prey species goes extinct, and the predator coexists with them and the
alien prey species.

• Some native prey species go extinct, and the predator coexists with the other
surviving native and the alien prey species.
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Fig. 5 Temporal variation of population sizes after the invasion of an alien prey species H• at t = ts = 600
into the coexistent equilibrium with the shared predator and two native prey species. Every prey population
grows in the logistic manner: gi (Hi ) = ri − βi Hi and Ki = ri /βi (i = 1, 2, •). Numerical calculations
with b1 = b2 = 0.001; δ = 0.3; β1 = β2 = β• = 0.00008; c1 = c2 = 0.3; c• = 1.2; r1 = 0.1;
r2 = 0.095; r• = 0.09; R0,1 = 1.25; R0,2 = 1.1875; R[2]

0 = 2.4375; W1 = 0; W2 = 0.0625;
H1(0) = 1250.0; H2(0) = 1187.5; H•(ts ) = 1.0; P(0) = 1.0. (a) No extinction occurs by the alien prey
species of b• = 0.0008 (R0,• = 3.6); (b) Only native prey H2 goes extinct by the alien prey species of
b• = 0.00055 (R0,• = 2.475); (c) All native prey populations H1 and H2 go extinct by the alien prey
species of b• = 0.0004 (R0,• = 1.8)

• All native prey species go extinct, and the predator coexists only with the alien
prey species.

Note that the invasion failure with the extinction of alien prey is induced by the
predation pressure from the native predator population sustained by the native prey
populations, if the alien prey species could not have an interspecific relation like
competitive to the native prey species at least at the stage of its invasion.

We can prove the following theorem for the influence of the invasion of an alien prey
species on the apparent competition system (1) with n native prey species (Appendix
I):

Theorem 5 If invades an alien prey species with parameters r•, K•, b•, c•, R0,• =
c•b•K•/δ, and function g• in the asymptotically stable coexistent equilibrium E∗[n] of
the system (1), the state transfers to the following equilibrium from the asymptotically
stable equilibrium E∗[n]:
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	 The alien prey species goes extinct, and the system returns to E∗[n] if and only if

r•
b•

<
rn
bn

and Gn
( r•
b•
) =

n∑

i=1

g−1
i

( r•/b•
ri /bi

ri
)

Ki
R0,i ≥ 1. (13)

	 Every native prey species � satisfying the following condition becomes extinct

r�
b�

<
r•
b•

and 1 − g−1•
( r�/b�

r•/b• r•
)

K•
R0,• ≤ W�, (14)

while the alien prey species persists. Especially if native prey species � = 1
satisfies the condition (14), all native prey species become extinct while the alien
prey species persists.

	 The alien prey species and all native prey species coexist if and only if

r•
b•

<
rn
bn

and Gn
( r•
b•
)

< 1, (15)

or alternatively

r•
b•

≥ rn
bn

and 1 − g−1•
( rn/bn
r•/b• r•

)

K•
R0,• > Wn . (16)

Since this theorem assumes the invasion of an alien prey species in the asymptotically
stable coexistent equilibrium E∗[n] of the system (1), it should be considered under the

condition that Wn < 1 < R[n]
0 from Lemma 2 and Theorem 2.

As a result fromTheorem5, the invasion of an alien prey specieswith r•/b• ≤ rn/bn
does not cause the extinction of any native prey species. Only the invasion of an alien
prey species with r•/b• > rn/bn may cause the extinction of some native prey species.
Hence the apparent competition system with large values of ri/bi for all native prey
species could be highly resistant to the invasion of alien prey species. Only an alien
prey species with a sufficiently large value of r•/b• can succeed in the invasion to
such an apparent competition system, so that such a successful invasion of alien prey
species would be rare in an ecological sense. For this reason such a system could be
regarded as being at a quasi-climax state as the apparent competition system.

Figure6 shows a numerical example about the state transition by the invasion of
an alien prey species. As indicated by Theorem 5, the structure of the system at the
equilibrium state newly established by the successful invasion of an alien prey species
could sensitively depend on the characteristics of the alien prey species. Especially
we see that the alien prey species with a larger intrinsic growth rate r• is more likely
to cause the extinction of a greater number of native prey species. The coexistence of
alien prey species with all native prey species is little likely unless the successfully
invading alien prey species has a sufficiently small value of r•/b• or that sufficiently
similar to the smallest one of native prey species (i.e., rn/bn).
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Fig. 6 Numerical calculation on the (b•, r•)-dependence of the equilibrium after the invasion of an alien
prey species into the system at the coexistent equilibrium with a predator and five native prey species. All
prey populations grow in the logistic manner: gi (Hi ) = ri − βi Hi and Ki = ri /βi (i = 1, 2, . . . , 5, •).
The left figure shows the dependence of the persistence of native prey species on the parameters. The
right figure shows the b•-dependence of the number of surviving prey species, the equilibrium population
sizes of the alien prey species H• and the predator P∗ for r• = 0.175. Commonly, β• = 0.0001; c• =
1.2; δ = 0.38; bi = 0.001; βi = 0.0001; ci = 0.7; {ri } = {0.2, 0.195, 0.19, 0.185, 0.180}; {R0,i } =
{3.6842, 3.5921, 3.5, 3.4079, 3.3158}; {Wi } = {0, 0.0921, 0.2763, 0.5526, 0.9210};R[5]

0 = 17.5

9 Equilibrium predator population size

From Lemmas 2 and 3, we have the following result on the predator population size
at the asymptotically stable equilibrium when it persists:

Corollary 4 When the predator persists in the system (1) with R[n]
0 > 1, the predator

population size P∗[s] at the asymptotically stable equilibrium E∗[s] satisfies that P∗[s] ∈
[ rs+1/bs+1, rs/bs ) if s < n, and P∗[n] < rn/bn if s = n with the number s defined as
(12).

This result briefly shows that the predator population size at the asymptotically stable
equilibrium is upper-bounded by the smallest value of ri/bi for coexisting prey species,
that is, rs/bs .

To understand more how the predator population size changes after the state tran-
sition caused by the extermination or invasion of a prey species, we compare the
equilibrium predator population sizes before and after the state transition. First we
can obtain the following result about the predator population size at the equilibrium
transferred from the coexistent equilibrium by the extermination of a prey species
(Appendix J):

Theorem 6 By the extermination of a prey species k from the coexistent equilibrium
E∗[n] for the system (1), the system transfers to an equilibrium at which the predator
population necessarily has a size smaller than before. Simultaneously every surviving
prey population at the newly established equilibrium has a size greater than before.
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The last part of this theorem can be easily seen from (10) because of the decreasing
monotonicity of g−1 when the equilibrium predator population size becomes smaller.
A numerical example is seen in Fig. 4.

Next, from Theorem 6, we can obtain the following lemma about the equilibrium
predator population size after the successful invasion of an alien prey species without
the extinction of any native prey species:

Lemma 5 When an alien prey species successfully invades in the system (1) at the
asymptotically stable equilibrium E∗[n] and does not cause the extinction of any
native prey species, the predator population size gets larger at the newly established
equilibrium E∗[n⊕1] than before the invasion.

This is because such a successful invasion of an alien prey species without the
extinction of any native prey species corresponds to the state transition from the asymp-
totically stable equilibrium E∗[n] to the asymptotically stable equilibrium E∗[n⊕1] with
all native and an alien prey species. Then it is the reverse transition from E∗[n⊕1] to E∗[n]
by the extermination of the alien prey species at the coexistent equilibrium E∗[n⊕1],
which has been considered in Theorem 6, where it is shown that P∗[n⊕1] > P∗[n].

As a consequence, making use of Corollary 4 and the other nature of the system (1),
we can prove the following theorem on the change of equilibrium predator population
size caused by the successful invasion of an alien prey species in the system (1)
(Appendix K):

Theorem 7 The successful invasion of an alien prey species always results in an
increase of the predator population size, independently of how many native prey
species are extinct at the new equilibrium. As the number of extinct native prey species
gets larger, the predator population size becomes greater at the new equilibrium than
before the invasion.

This feature of the system (1) is numerically illustrated in Figs. 1, 5, and 6. As the
predator population size increases, each of surviving native prey populations naturally
has a size smaller at the new equilibrium than before. This can be easily seen from
(10).

As indicated by Fig. 6, we can further prove the following feature of the system
(1) with respect to the predator population size P∗[•] the equilibrium E∗[•] where the
predator coexists with only the alien prey species after the extinction of all native prey
species (Appendix L):

Corollary 5 At the asymptotically stable equilibrium E∗[•] where the predator coexists
with only an alien prey species of parameters r•, K•, b•, c•, R0,•, and function g•,
the equilibrium predator population size P∗[•] takes the maximum for a specific value
of b•.

For the specific model with one native and an alien prey species which follow the
logistic growth of population size, g j (Hj ) = r j − β j H j and K j = r j/β j ( j = 1, •),
we have

P∗[•] = 1

b•

(

r• − β•δ
c•

1

b•

)

,
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and then the condition (14) with � = 1 becomes

r2•
4

c•
β•δ

≥ r1
b1

and b• ∈ (b−• , b+• ) (17)

with

b±• := r• ±√r2• − 4(β•δ/c•)(r1/b1)
2r1/b1

.

At the asymptotically stable equilibrium E∗[•] which satisfies the condition (17), it can
be easily shown that P∗[•] takes themaximumβ•δ/c• for b• = 2β•δ/(r•c•) ∈ (b−• , b+• ),
which corresponds toR0,• = 2.

10 Concluding remarks

In this paper, we analyzed the Lotka–Volterra n prey-1 predator apparent competition
system (1), focusing on which prey species goes extinct or persists. We have shown
that the extinct prey species has the smaller value of r/b than that of persistent prey
species in our model (Theorem 3).

Basic predator replacement rate of available prey species
The predator goes extinct if every available prey species provides very small basic
predator replacement rate for the predator (R0,i defined by (6)) (Theorem 1). When a
prey species provides a sufficiently large basic predator replacement rate, the preda-
tor persists and some of available prey species may go extinct due to the effect of
apparent competition. In such a case, if all other prey species provide very small
basic predator replacement rates, the predator’s persistence relies on the prey species
with a sufficiently large basic predator replacement rate. Then such the prey species
can be regarded as the “keystone species” for the predator’s persistence, because the
extinction of the prey species by an ecological disturbance for example could cause
the predator’s extinction to make the collapse of the apparent competition system (see
Fig. 4b). Such an apparent competition system could be regarded as little sustainable.
In the context of a pest control, in order to suppress/eliminate the pest population
regarded as a generalist predator, it would be a good option to identify such a keystone
prey species for the pest. In contrast, if there are some available prey species with
large basic predator replacement rate, the apparent competition system would be less
vulnerable to the extinction of available prey species with some cause.

Invasion of alien prey species
Successful invasion of an alien prey species could strengthen the apparent competi-
tion effect on native prey species. Then, some native species would go extinct, and
the system would transfer to the equilibrium with the predator, the alien prey species
and persistent native prey species (Theorem 5). Thus, a series of the invasion of alien
prey species could cause the decrease in the number of prey species available for
the predator due to the extinction of prey species by the apparent competition. We
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note that the persistent prey species must have sufficiently large value of r/b, while
the extinct prey species have the value smaller than that of the alien prey species.

Independently of how many native prey species go extinct with the successful
invasion of an alien prey species, the equilibrium predator population size becomes
larger than before after the established settlement of the new prey species (Theorem 7).
Then the equilibriumpopulation size of every native prey species becomes smaller than
before, since the increased size of predator population makes the predation pressure
stronger for them. Indeed Messelink et al. (2010) investigated the biological control
by a generalist predator in a laboratory system of three pest species (Western flower
thrips, greenhouse whitefly, and spider mite) and their predator (predatory mite), in
which such a dependence of the predator population size on the composition of prey
species was clearly observed.

The predator population size becomes larger as the number of persistent native
prey species gets smaller after a successful invasion of an alien prey species. As the
number of extinct prey species due to the successful invasion of an alien prey species
gets larger, the persistent native prey species undergo stronger apparent competition
effect. In such a case, the apparent competition effect from the alien prey species
would overcompensate that from those native prey species which have gone extinct.
In short, the successful invasion of an alien prey species which could cause a strong
apparent competition effect is likely to result in the extinction of native prey species.
From the viewpoint of the predator, such extinction of native prey species appears
as an exchange of some available prey species with the other species preferable for
the predator’s reproduction.

As a consequence, the invasion of an alien prey species into the equilibrium of
an apparent competition system never reduces the predator population size, and its
success necessarily makes the effect of apparent competition stronger to the native
prey species. In contrast, the extinction of a prey species from the equilibrium of
an apparent competition system never causes any secondary extinction of the other
prey species, while it may cause the extinction of predator (Theorem 4). These results
may be regarded as corresponding to those given by Petchey (2000), who investigated
some microcosms of bacteria and bacterivores in laboratory and showed that the prey
diversity can affect the predator population dynamics. As implied by our theoretical
arguments above, the apparent competition could be a significant factor to determine
the structure of foodweb, tangled with the other interspecific reactions within it, as
discussed inHolt andLawton (1994); Chaneton andBonsall (2000); Frost et al. (2016);
Sheehy et al. (2018); Stige et al. (2018); Gripenberg et al. (2019); Ng’weno et al.
(2019).

In the context of pest control, the invasion of alien prey species would be effective
only if the purpose of the pest control is to reduce the population of a native prey
species (which is the pest), while the extermination of a native prey species would be
effective only if the purpose is to reduce the predator population (which is the pest) as
alreadymentioned in the above. Actually for biological control in agroecosystems, the
invasion of an alien species would be a better choice compared to the extermination
of a native species. In grape vineyards, Karban et al. (1994) found that the release of
economically unimportant Willamette mites alone, or of predatory mites alone fails
to significantly reduce populations of the damaging Pacific spider mite. However,
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Fig. 7 Numerical calculation on the (b•, r•)-dependence of the equilibrium after the invasion of an alien
prey species into the system at the coexistent equilibrium with a predator and six native prey species with
the same value rk/bk = 80.0 (k = 1, 2, . . . , 6). All prey populations grow in the logistic manner: gi (Hi ) =
ri − βi Hi and Ki = ri /βi (i = 1, 2, . . . , 5, •). βk = 0.001; {rk } = {0.32, 0.16, 0.08, 0.04, 0.02, 0.01};
{bk } = {0.004, 0.002, 0.001, 0.0005, 0.00025, 0.000125}; {ck } = {0.5, 0.8, 0.8, 0.8, 0.8, 0.8}; δ = 0.48;

{R0,k } = {1.3333, 0.5333, 0.1333, 0.0333, 0.0083, 0.0021}; R[6]
0 = 2.0438; Wk = 0; β• = 0.001;

c• = 0.8

when both herbivorous Willamette and predatory mites were released together, the
population of the Pacific mites was reduced. This may be regarded as a case when the
invasion of an alien prey species (the herbivorous Willamette mite) would be effective
to reduce a native prey population (the Pacific mite) if there is a shared predator
(the predatory mite). Another similar experimental research was conducted by Liu
et al. (2006), and concluded the effectiveness of application of shared predator and
apparent competitor for the pest control. In contrast to the pest control, the apparent
competition could be an important dynamical factor in the context of the conservation
of endangered prey species too (DeCesare et al. 2010). As Holt and Hochberg (2001)
discussed, the indirect interactions may contribute to the biological control in such a
way. At the same time, it should be kept in mind that the invasion of an alien species as
a biological control agent would cause the decrease of some native species populations
other than that of the target pest species (Carvalheiro et al. 2008).

Functional homogenization
As a special case in our model, if every prey species has a common value of r/b, the
number of prey species with which the shared predator can coexist is unlimited for
the Lotka–Volterra n prey-1 predator system (1), independently of the difference not
only in the values of r and b themselves but also in any other parameter (Corollary
3). However, such an apparent competition system would be highly vulnerable to the
invasion of an alien prey species. As indicated by the illustrative numerics in Fig. 7
about the system transition by the invasion of an alien prey species, the invasion success
results in the coexistence with all native species or alternatively the extinction of all

123



   19 Page 20 of 39 H. Seno

Fig. 8 A scenario for the long-term transition of apparent competition system toward the functional homog-
enization with a smaller number of prey species, driven by the extinction of native prey species and the
invasion of alien prey species. For detail, see the main text

native prey species. In the latter case, the system transfers to that of 1 prey-1 predator
where the prey is the successfully settled alien.

These results imply that the long-lasting existence of an apparent competition sys-
tem undergoing a number of alien prey invasions may lead to the relatively large value
of r/b for its persistent prey species. Further, since the value r/b must have an upper
bound for some biological restriction, the variance of r/b over the persistent prey
species would necessarily become small as long as the system remains an apparent
competition system even after a sequence of changes in the member of prey species
following their extinction and invasion (see Fig. 8). This was discussed also in Holt
(1977, 1984); Holt andBonsall (2017) as the high species diversity under the condition
that the value of r/b is similar for all prey species.

Furthermore this result may be related to the “biotic homogenization”, the pro-
cess making the species composition more similar after the alien species invasion,
as Dangremond et al. (2010) discussed about the plant community with relation to
the apparent competition. Since our results indicate that only the values r/b repre-
senting the nature of persistent prey species come to have a small variance in the
apparent competition system of our model, it should be specifically regarded as func-
tional homogenization defined in Olden (2006); Olden and Rooney (2006). Although
it might be accompanied with “genetic homogenization”, our results does not imply
it for the transition of apparent competition system.

As a similar theoretical work by numerics with a specific mathematical model,
Spaak et al. (2023) considered the assembly of two-trophic-level ecosystem with a
series of invasions and extinctions. They discussed the trait distribution of prey and
predator species, and got the results that the trait distribution of prey species mimicked
a given resource distribution for them, while that of predator species tended to follow
the trait distribution of prey species. Their results may be also regarded as on such
a functional homogenization by the system transition with a series of invasions and
extinctions.

On the other hand, Clavel et al. (2011) discussed a global functional homogeniza-
tion with the world wide decline of specialist species. It is caused by the ecological
disturbance with the habitat destruction, degradation in a global scale. They argues
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the higher likeliness of the extinction of a specialist species by some ecological distur-
bance too. According to the results for our model, as illustrated in Fig. 8, a series of the
extinction of native prey species and the invasion of alien prey species would tend to
make the number of available prey species smaller in the apparent competition system,
and could make it a 1 prey-1 predator system in which the predator appears as a spe-
cialist relying on a specific prey species. Such the apparent exclusion of prey species
other than a particular prey species may be referred as “dynamic monophagy” (Holt
and Lawton 1994). There are some evidence of the exclusion of phytophargous insect
species by shared enemies (see Frank van Veen et al. 2006, and references therein).
Even for such a 1 prey-1 predator system as the climax state, it may be possible to
have a new prey by its successful invasion, whereas it would hardly occur because
the nature of such a successful invader prey species must be rather restricted for the
climax state (i.e., with a large value of r/b in our model). This indicates the resistance
of such the climax 1 prey-1 predator system against the alien prey species invasion,
while it would be vulnerable to some ecological disturbance for the persistent prey
species with respect to the system sustainability as argued in Clavel et al. (2011).

We considered a simple Lotka–Volterra prey-predator system with the per capita
growth rate of every prey species given as a general function of its density. The
functions for prey species in the system may be different from each other, while
they must have the same mathematical features assumed in our modeling section.
Our results may change to an extent if some of assumed features of the function is
modified, while it would be possible tomake the assumptions for the function looser to
give the qualitatively same results as obtained in this paper. For example, if we assume
a weak Allee effect for the per capita growth rate, it would be the case, as was partially
discussed inHolt (1977), whereas it could be regarded still as an open problem because
the mathematical arguments corresponding to our results must become rather different
and probably very delicate.

On the other hand, naturally for some other types of prey-predator system with
predation terms different from the Lotka–Volterra type, stable periodic solution or
bistability state can appear as evident inmodelswith switching predation (for example,
see Teramoto et al. 1979; Messia et al. 1984; Abrams et al. 1998; Schreiber 2004;
Kr̆ivan and Eisner 2006; Serrouya et al. 2015). As implied by Holt (1977); Noy-Meir
(1981), even the simple mathematical model of prey-predator population dynamics
may show a specific behavior, depending on the assumptions for the dynamical nature
of the interaction between prey and predator. Although mathematical works on such
nonlinear systems would be interesting and meaningful to give some other insights
about the multi species population dynamics and the ecosystem assembly, we do not
argue here anymore, but leave the discussion to other past and future related works
(Holt 1977; Kr̆ivan 2014; Schreiber and Kr̆ivan 2020).

Although our results are from a simple mathematical model, they could demon-
strate that the apparent competition effect could drive some prey species to extinction
and contribute to the ecosystem assembly, as indicated by many previous works (for
example, Frank van Veen et al. 2006; Bhattarai et al. 2017; Hullé et al. 2022; Lorusso
and Faillace 2022). As Holt (2023) discussed, the apparent competition system could
be observed in the context other than ecology, for example, in some sociological one.
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We expect that our mathematical work will be helpful for some theoretical works on
some other related problems.

Appendix A Boundedness of solution

There exists the solution of P such that P(t) ≡ 0 for any t according to (1) with
P(0) = 0. On the other hand, from (1), we can get the following formal equations of
the solution:

Hi (t) = Hi (0) exp
[ ∫ t

0

{
gi (Hi (τ )) − bi P(τ )

}
dτ
]

(i = 1, 2, . . . , n); (A1)

P(t) = P(0) exp
[

− δt +
n∑

i=1

ci bi

∫ t

0
Hi (τ ) dτ

]
. (A2)

The formal solution (A2) for P(t) shows that P(t) > 0 for any t > 0 if P(0) > 0,
because of the uniqueness of the solution for (1).

In the same way, there exists the solution such that Hi (t) ≡ 0 for any t and any i
according to (1) with Hi (0) = 0. Hence, from the uniqueness of the solution for (1),
the formal solution (A1) for Hi (t) shows that Hi (t) > 0 for any t > 0 with Hi (0) > 0.
Then, for any Hi > 0 and P > 0, we have

dHi

dt

∣
∣
∣
∣
Hi≥Ki

= gi (Hi )Hi − bi PHi < 0, (A3)

because gi (H) is strictly decreasing in terms of H > 0 and gi (H) ≤ gi (Ki ) = 0
for any H ≥ Ki . Therefore, if Hi (0) ∈ (0, Ki ] (i = 1, 2, . . . , n), it is impossible
that Hi (t) ≥ Ki for any t > 0. Consequently we find that, if Hi (0) ∈ (0, Ki ] and
P(0) > 0, then Hi (t) ∈ (0, Ki ) at any time t > 0.

Appendix B Proof of Theorem 1

By the boundedness of solution shown in Appendix A, we can find that

dP

dt
=
(

− δ +
n∑

i=1

cibi Hi

)
P ≤

(
− δ +

n∑

i=1

cibi Ki

)
P

= δ
(

− 1 +
n∑

i=1

ci bi Ki

δ

)
P = δ

(− 1 + R[n]
0

)
P.

Hence from the comparison theorem, we can find that

P(t) ≤ P(0)e−δ(1−R[n]
0 )t (B4)
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for any t > 0. Then we find from (B4) that P(t) → 0 as t → ∞ ifR[n]
0 < 1.

Next, suppose that P(t) → 0 as t → ∞. From (1), we can easily see that Hi (t) →
Ki (i = 1, 2, . . . , n) as P(t) → 0. On the other hand, any equilibrium such that
P = 0 and Hk = 0 for some k is always unstable because any prey population
grows in a monotonic manner independently of the other prey populations when the
predator is absent. Thus, if P(t) → 0, the system (1) asymptotically approaches the
equilibrium (K1, K2, . . . , Kn, 0). By the local stability analysis for the equilibrium
(K1, K2, . . . , Kn, 0), we can easily prove that P(t) → 0 as t → ∞ only ifR[n]

0 < 1,

while the equilibrium (K1, K2, . . . , Kn, 0) is unstable ifR
[n]
0 > 1, so that the predator

is then persistent.

When R[n]
0 = 1, we have δ =

n∑

i=1

ci bi Ki , which leads to

dP

dt
= −

n∑

i=1

cibi (Ki − Hi )P < 0

for any t > 0 since P(t) > 0 and Hi (t) < Ki for any t > 0 (Appendix A). Therefore,
P(t) → 0 as t → 0 again in this case. These arguments prove Theorem 1.

Appendix C Proof of Lemma 2

The former equation of (9) shows it necessary for the existence of E∗[k] defined by
(8) that bi P∗[k] = gi

(
H∗[k],i

)
< gi (0) = ri , that is, P∗[k] < ri/bi for i = 1, 2, . . . , k.

This is because gi (H) is monotonically decreasing in terms of H and positive only
for H ∈ [0, Ki ). From the numbering of prey species as given by (4), we find that if
and only if

P∗[k] <
rk
bk

, (C5)

we have P∗[k] < ri/bi for all i = 1, 2, . . . , k. This is the proof for the last part of
Lemma 2.

The latter equation of (10) determines the predator population size at the equilibrium
E∗[k]. From the assumptions for gi given in Sect. 2, the left side of the latter equation
of (10), that is, the function Gk(P∗[k]) is a strictly decreasing function continuous and
differentiable in terms of P∗[k] > 0. Thus if the latter equation of (10) has a positive
root P∗[k], it must be unique. Then it is necessary for the existence of such a positive
root P∗[k] of the latter equation of (10) that Gk(0) > 1, that is,

Gk(0) =
k∑

i=1

g−1
i (0)

Ki
R0,i =

k∑

i=1

R0,i = R[k]
0 > 1, (C6)
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whereR[k]
0 is defined in (11) as well asR[n]

0 by (7), and necessarilyR[k]
0 ≤ R[n]

0 for
k ≤ n.

At the same time, from the condition (C5) for the existence of the equilibrium E∗[k],
it is necessary for the existence of such a positive root P∗[k] of the latter equation in
(10) that Gk(rk/bk) < 1, that is,

Wk := Gk
( rk
bk

) =
k∑

i=1

g−1
i

( rk/bk
ri /bi

ri
)

Ki
R0,i < 1, (C7)

where Wk is defined in (11). Note that conditions (C5) and (C7) are mathematically
equivalent to each other.

Now we can find the monotonicity of the sequence {Wk}:
Lemma 6 The sequence {Wk} is non-decreasing in terms of k: W1 = 0, Wk < Wk+1
if and only if rk+1/bk+1 < rk/bk, and Wk = Wk+1 if and only if rk+1/bk+1 = rk/bk.

Proof We can easily derive

W1 = G1
( r1
b1

) = g−1
1

( r1/b1
r1/b1

r1
)

K1
R0,1 = g−1

1 (r1)

K1
R0,1 = 0

K1
R0,1 = 0.

Next we note the following nature of the function Gk :

Gk
( rk+1

bk+1

) =
k∑

i=1

g−1
i

( rk+1/bk+1
ri /bi

ri
)

Ki
R0,i

=
k+1∑

i=1

g−1
i

( rk+1/bk+1
ri /bi

ri
)

Ki
R0,i = Gk+1

( rk+1

bk+1

) = Wk+1, (C8)

since g−1
i

( rk+1/bk+1
rk+1/bk+1

ri
) = g−1

i (ri ) = 0. Then, from the numbering of prey species as
given by (4), and the strictly decreasingmonotonicity ofGk , we haveGk(rk+1/bk+1) >

Gk(rk/bk) = Wk if rk+1/bk+1 < rk/bk , and Gk(rk+1/bk+1) = Gk(rk/bk) = Wk if
rk+1/bk+1 = rk/bk . Hence, from (C8), we have the result in Lemma 6. �
In addition, from the strictly decreasing monotonicity of Gk with Gk(0) = R[k]

0 shown
in (C6), we can find that Gk(rk+1/bk+1) < Gk(0), that is,

Lemma 7 Wk+1 < R[k]
0 for every k = 1, 2, . . . , n − 1.

From Lemmas 6 and 7, we have found that Wk ≤ Wk+1 < R[k]
0 . Consequently, if

and only if the conditions (C6) and (C7) are satisfied, the latter equation of (10) has
a unique positive root P∗[k] such that the condition (C5) holds, and H∗[k],i ∈ (0, Ki )

(i = 1, 2, . . . , k) is uniquely determined for the equilibrium E∗[k] defined by (8). This
result proves Lemma 2.
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Appendix D Proof of Theorem 2

For the equilibrium E∗[n], let us consider the function

V[n](t) := P∗[n]
{
P(t)

P∗[n]
− 1 − log

P(t)

P∗[n]

}

+
n∑

i=1

ci H
∗[n],i
{
Hi (t)

H∗[n],i
− 1 − log

Hi (t)

H∗[n],i

}

.

(D9)

From the equations of (1) and the equilibrium values determined by (10) with k = n
for E∗[n], we can get the following expression of the derivative of V[n](t):

dV[n](t)
dt

=
n∑

i=1

ci {Hi (t) − H∗[n],i }{gi
(
Hi (t)

)− gi
(
H∗[n],i

)}. (D10)

Because of the strictly decreasing monotonicity of gi as assumed in Sect. 2, we have
gi (Hi ) > gi

(
H∗[n],i

)
if and only if Hi < H∗[n],i , and gi (Hi ) < gi

(
H∗[n],i

)
if and only

if Hi > H∗[n],i . Hence the right side of (D10) is necessarily negative if Hi �= H∗[n],i
about some i , that is, dV[n]/dt < 0 as long as Hi �= H∗[n],i about some i . Thus we
have dV[n]/dt = 0 only when Hi (t) = H∗[n],i for every i .

Note that Hi (t) cannot remain the value H∗[n],i besides being at the equilibrium
E∗[n]. Since Hi (t) temporally varies as long as P(t) �= P∗[n] even when Hi (t) = H∗[n],i
for every i , we can see that V[n](t) is monotonically decreasing in terms of t > 0,
even though dV[n]/dt = 0 at some moments when Hi (t) = H∗[n],i for every i with
P(t) �= P∗[n]. Moreover, as long as P(t) > 0 and Hi (t) > 0, we have V[n] ≥ 0, where
V[n] = 0 only at the equilibrium E∗[n].

Therefore we find that V[n] is monotonically decreasing in terms of t > 0, positive
definite for any (H1, H2, . . . , Hn, P) other than E∗[n] in D defined by (3), and zero
only at the equilibrium E∗[n]. This means that the function V[n] is a Lyapunov function
for the equilibrium E∗[n], and we can conclude that E∗[n] is globally asymptotically
stable in D. whenever it exists. Consequently these arguments prove Theorem 2. For
the further mathematical information about the analysis on the global stability with
Lyapunov function, refer to, for example, Goh (1980); Takeuchi and Adachi (1980);
Takeuchi (1996) and the references therein.

Appendix E Proof of Lemma 3

For the equilibrium E∗[k] defined by (8) with k < n, the Jacobi matrix becomes
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

diag(1,k)(g
′
i (H

∗[k],i )H∗[k],i ) 0
−b1H∗[k],1
−b2H∗[k],2

...

−bk H∗[k],k

0 diag(k+1,n)(�i )

0
0
...

0
c1b1P∗[k] c2b2P∗[k] · · · ckbk P∗[k] ck+1bk+1P∗[k] ck+2bk+2P∗[k] · · · cnbn P∗[k] 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(E11)

where diag( j,�)(ai ) denotes the (�− j +1)× (�− j +1) diagonal matrix which (k, k)-
element is ak (k = j, j + 1, . . . �), 0 is the zero matrix, and �i := gi (0) − bi P∗[k] =
ri − bi P∗[k]. Then the eigenvalue λ is given by the root of the following equation:

�(λ)

n∏

i=k+1

(
�i − λ

) = 0 (E12)

with

�(λ) = −λ

k∏

i=1

{
g′
i (H

∗[k],i )H∗[k],i − λ
}

+
k∑

i=1

(−1)k+i bi H
∗[k],i · cibi P∗[k]

k∏

j=1, j �=i

{
g′
j (H

∗[k], j )H∗[k], j − λ
}
.

From (E12), �i (i = k + 1, k + 2, . . . , n) is the eigenvalue, and it is necessary for
the local stability of E∗[k] that �i ≤ 0, that is, P∗[k] ≥ ri/bi (i = k + 1, k + 2, . . . , n).
Because of the numbering of prey species as given by (4), this condition is satisfied if
and only if

P∗[k] ≥ rk+1

bk+1
. (E13)

This proves the latter part of Lemma 3. With the same arguments as in Appendix C
for the proof of Lemma 2, we have the following condition equivalent to (E13):
Gk(rk+1/bk+1) = Wk+1 ≥ 1.

From Lemma 7 in Appendix C, if Wk+1 ≥ 1, then we have R[k]
0 > 1. Thus, if

Wk < 1 ≤ Wk+1, we haveWk < 1 < R[k]
0 , so that E∗[k] exists from Lemma 2. Hence,

if the equilibrium E∗[k] exists and is locally asymptotically stable, it is necessary that
Wk < 1 ≤ Wk+1. Note that, if Wk+1 < 1, the equilibrium E∗[k] exists and is unstable,
because it holds that P∗[k] < rk+1/bk+1, that is,�k+1 > 0,which indicates the existence
of a positive eigenvalue for the Jacobi matrix (E11).
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Next, if the condition Wk < 1 ≤ Wk+1 is satisfied, the equilibrium E∗[k] exists
from Lemma 2, and the condition (E13) holds from the above arguments. We have
�i ≤ 0 (i = k + 1, k + 2, . . . , n) also from the above arguments. Then all diagonal
elements of the Jacobi matrix (E11) are non-positive since g′

i (H
∗[k],i )H∗[k],i < 0 with

g′
i (H

∗[k],i ) < 0 and H∗[k],i > 0. Now we can apply the criterion of asymptotic stability
by Jeffries (1974) for the linearized system around the equilibrium E∗[k], represented
by the Jacobi matrix (E11). It was applied also by Holt (1977, Appendix I) to prove the
locally asymptotic stability of the corresponding equilibrium for the system (1) with
prey species growing in the logistic manner as gi (Hi ) = ri − βi Hi (i = 1, 2, . . . , n).
The criterion for the Jacobi matrix {ai j } consists of five conditions: (i) aii ≤ 0 for all
i ; (ii) ai j a ji ≤ 0 for all i �= j ; (iii) ai j a jk · · · a�qaqi = 0 for three or more distinct
indices; (iv) det{ai j } �= 0; (v) the signed digraph of {ai j } “fails” a “color test” defined
for a predation community by Jeffries (1974) (also refer to Levins 1975; Holt 1977).
Since the last condition (v) does not depend on the detail of elements in {ai j } but
concerns only their signs, the Jacobi matrix (E11) satisfies it as was already found in
Holt (1977, Appendix I). It is apparent that the conditions (i) to (iv) hold now for the
Jacobi matrix (E11).

Therefore, it is ensured that the equilibrium E∗[k] exists and locally asymptotically
stable if the condition Wk < 1 ≤ Wk+1 is satisfied. In other words, the condition
Wk < 1 ≤ Wk+1 is sufficient for the existence and locally asymptotic stability of E∗[k].
Lastly, there arguments prove the former part of Lemma 3.

Appendix F Proof of Lemma 4

WhenW� < 1 ≤ W�+1, any equilibrium E∗[k] defined by (8) with k > � does not exist
because the existence condition (11) in Lemma 2 cannot be satisfied. Furthermore,
even if an equilibrium E∗[k] with some k < � exists, it must be unstable. Since Wk ≤
Wk+1 ≤ W� for any k < � because of the non-decreasingmonotonicity of the sequence
{Wk} as shown in Lemma 6 of Appendix C, we have Wk ≤ Wk+1 < 1 for k < � with
W� < 1. Therefore the equilibrium E∗[k] with k < � is unstable even if it exists, since
there is some positive eigenvalue for the Jacobian matrix.

On the other hand, we may consider the other type of equilibrium different from
that defined by (8), for example, like

(H1, H2, . . . , Hn, P) = (H∗
[k′],1, . . . , H

∗
[k′],�−1, 0, H

∗
[k′],�+1,

. . . , H∗
[k′],k′+1, 0, . . . , 0︸ ︷︷ ︸

n−k′
, P∗

[k′]) (F14)

with H∗
[k′],i > 0 for i = 1, . . . , � − 1, � + 1, . . . , k′ + 1 and P∗

[k′] > 0. With the same
arguments as the proof of Lemma 2 in Appendix C, we can easily find it necessary for
the existence of the equilibrium (F14) that P∗

[k′] < rk′/bk′ . Moreover with the same
arguments as in Appendix E, we can find a necessary condition for the local stability
of the equilibrium (F14) that P∗

[k′] ≥ r�/b�. From the numbering of prey species as
given by (4), it is impossible to satisfy these necessary conditions for the existence
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and local stability of equilibrium (F14) at the same time. Thus, even if the equilibrium
(F14) exists, it must be necessarily unstable. By the same arguments, we can prove
that any equilibrium other than (8) must be unstable even if it exists. Consequently
we find that only the type of equilibrium defined by (8) can be locally asymptotically
stable.

Further from Theorem 2, we have noted that the equilibrium E∗[n] exists and is

globally asymptotically stable if Wn < 1 < R[n]
0 . Indeed, when Wn < 1 < R[n]

0 ,
any other existing equilibrium E∗[k] with k < n is unstable since it cannot hold that
Wk < 1 ≤ Wk+1 in the case, because of the non-decreasing monotonicity of the
sequence {Wk}. Inversely when Wk < 1 ≤ Wk+1 for a k < n, the equilibrium E∗[n]
does not exist since it cannot hold that Wn < 1 < R[n]

0 . Accordingly with these
arguments, we can conclude the result given as Lemma 4.

Appendix G Proof of Theorem 3

From Theorem 1, if R[n]
0 ≤ 1, the predator goes extinct while all preys persist at the

equilibrium for the system (1). Then the equilibrium E∗[k] with P∗[k] > 0 is not defined.
The definition of the specific number s given by (12) is valid only when the predator
persists with R[n]

0 > 1. As long as arguing the stability of the equilibrium E∗[k], it is
necessary and satisfactory to consider the case whereR[n]

0 > 1.
The sequence {Wk} is non-decreasing in terms of k as shown by Lemma 6 in

Appendix C, and satisfies that Wk+1 < R[k]
0 for every k = 1, 2, . . . , n − 1 as shown

by Lemma 7 in Appendix C. Lemma 4 indicates that, if there is a locally asymptot-
ically stable equilibrium, then it is unique. Hence, from Lemma 4, when the locally
asymptotically stable equilibrium is given by E∗[s] with s < n, it is satisfied that

Ws < 1 ≤ Ws+1 < R[s]
0 . Then, for any unstable equilibrium E∗[k] with k > s, it can-

not hold that Wk < 1, since Wk ≥ Ws+1 ≥ 1 from the non-decreasing monotonicity
of the sequence {Wk}. In contrast, for any unstable equilibrium E∗[k] with k < s, it
holds thatWk < 1, sinceWk ≤ Ws < 1. Moreover, even for such a k < s, it may hold
that Wk < 1 ≤ R[k]

0 . Therefore, these arguments show that the order s for the locally
asymptotically stable equilibrium E∗[s] is uniquely determined by (12).

In the case of s = n, we already have the result of Theorem 2 with Lemma 2. When
exists the locally asymptotically stable equilibrium E∗[s] with s < n defined by (12),
let us consider the function

V[s](t) : = P∗[s]
{
P(t)

P∗[s]
− 1 − log

P(t)

P∗[s]

}

+
s∑

i=1

ci H
∗[s],i
{
Hi (t)

H∗[s],i
− 1 − log

Hi (t)

H∗[s],i

}

+
n∑

i=s+1

ci Hi (t). (G15)

From the equations of (1) and the equilibrium values determined by (10) with k = s
for E∗[s], we can derive the following expression of the derivative of V[s](t):
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dV[s](t)
dt

=
s∑

i=1

ci {Hi (t) − H∗[s],i }
{
gi
(
Hi (t)

)− gi
(
H∗[s],i

)}

+
n∑

i=s+1

ci Hi (t)
{
gi
(
Hi (t)

)− bi P
∗[s]
}
, (G16)

The first term is necessarily negative as long as Hi �= H∗[s],i about some i ∈
{1, 2, . . . , s}, which can be proven by the same arguments as the proof of Theorem 2
in Appendix D. As shown in Lemmas 2 and 3, we have P∗[s] ∈ [rs+1/bs+1, rs/bs) for
the locally asymptotically stable equilibrium E∗[s]. Then we can find that

gi
(
Hi (t)

)− bi P
∗[s] ≤ gi

(
Hi (t)

)− bi
rs+1

bs+1
= gi

(
Hi (t)

)− rs+1/bs+1

ri/bi
ri

≤ gi
(
Hi (t)

)− ri = gi
(
Hi (t)

)− gi (0) < 0,

for any i ≥ s + 1 because rs+1/bs+1 ≥ ri/bi for any i ≥ s + 1 by the numbering
of prey species as given by (4), and gi (0) = ri > gi (Hi ) for any Hi > 0, following
the strictly decreasing monotonicity of gi as assumed in Sect. 2. Hence we have found
that dV[s](t)/dt < 0 in D\E∗[s].

It can be easily found from (G15) and (G16) that V[s] and dV[s]/dt are zero
only at the equilibrium E∗[s], and further that V[s] is positive definite for any
(H1, H2, . . . , Hn, P) other than E∗[s] in D defined by (3) in Lemma 1. This means
that the function V[s] is a Lyapunov function for the equilibrium E∗[s] about the solu-
tion of the system (1), and we can conclude that E∗[s] is globally asymptotically stable
in D when it is locally asymptotically stable. Consequently these arguments prove
Theorem 3.

Appendix H Proof of Theorem 4

Let us suppose the extermination of prey species k from the equilibrium E∗[n]. From
Theorem 3, the coexistent equilibrium E∗[n\k]of the predator and n−1 rest prey species

is globally asymptotically stable if and only if Wn\k < 1 < R
[n\k]
0 , where

Wn\k := Wn − g−1
k

( rn/bn
rk/bk

rk
)

Kk
R0,k; R

[n\k]
0 := R[n]

0 − R0,k . (H17)

From Theorem 1, if and only ifR[n\k]
0 ≤ 1, the predator goes extinct at the system

with n − 1 available prey species after the extermination of prey species k from E∗[n].
Otherwise it persists. From the asymptotic stability of E∗[n], it is supposed now that

Wn < 1 < R[n]
0 . Then, from (H17) we have

Wn\k < 1 − g−1
k

( rn/bn
rk/bk

rk
)

Kk
R0,k; R

[n\k]
0 > 1 − R0,k .
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The former inequality shows that Wn\k < 1. Hence, when R
[n\k]
0 > 1, it is satisfied

that Wn\k < 1 < R
[n\k]
0 . These arguments prove Theorem 4.

Appendix I Proof of Theorem 5

Let us consider the invasion of an alien prey species with its parameters c•, b•, and
function g• accompanied with r• and K•. We now define the following R[n⊕1]

0 and
Wn⊕1 for the system invaded by such an alien prey species:

R[n⊕1]
0 := R[n]

0 + R0,•;

Wn⊕1 :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Wn + g−1•
( rn/bn
r•/b• r•

)

K•
R0,• if

r•
b•

≥ rn
bn

;

Gn
( r•
b•
) =

n∑

i=1

g−1
i

( r•/b•
ri /bi

ri
)

Ki
R0,i if

r•
b•

<
rn
bn

with R0,• := c•b•K•/δ. Note that Gn(r•/b•) > Gn(rn/bn) = Wn for r•/b• < rn/bn ,
since Gn(x) is a strictly decreasing function in terms of x > 0.

Theorems 2 and 3 say that the system transfers to the coexistent equilibrium E∗[n⊕1]
of the predator, all native prey species, and the alien prey species if and only ifWn⊕1 <

1 < R[n⊕1]
0 . Since necessarily R[n⊕1]

0 > 1 when R[n]
0 > 1, Theorem 1 shows that

the predator must persist with the invasion of any alien prey species. Then we can get
the following results:

Lemma 8 When Wn < 1 < R[n]
0 , the coexistent equilibrium E∗[n⊕1] of the predator,

all native prey species, and the alien prey species is globally asymptotically stable
if and only if the condition (15) or (16) holds. Otherwise some native species or the
alien prey species goes extinct.

From Corollary 3 in Sect. 7, if r•/b• = rn/bn , no extinction of native prey species
occurs even after the invasion of the alien prey species because Wn⊕1 = Wn . This is
included in the condition (16).

Since we suppose the asymptotically stable equilibrium E∗[n] of the system with

Wn < 1 < R[n]
0 before the invasion of the alien prey species, we find the following

result of a possible return of the system to the equilibrium E∗[n], making use of Lemma
3 and Theorem 3:

Lemma 9 When Wn < 1 < R[n]
0 , the system returns to E∗[n] with the extinction of

alien prey species if the condition (13) is satisfied.

The condition (13) is complementary to the condition (15). Therefore the extinction
of some native species by the invasion of an alien prey species could occur only if
r•/b• > rn/bn .

Since Lemma 3 shows that only an equilibrium of the type given by (8) can be
asymptotically stable, if the alien prey species goes extinct with r•/b• > rn/bn , then
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so do all native prey species k with rk/bk ≤ r•/b•. Then, again from Lemma 3, any
equilibrium E∗[�] for � with r�/b� > r�+1/b�+1 > r•/b• cannot be asymptotically
stable. This is because the asymptotic stability of such E∗[�] requires the condition that
W� < 1 ≤ W�+1, which cannot be satisfied since W�+1 < Wn < 1 < R[n]

0 by the
increasing monotonicity of the sequence {Wk}. Hence the equilibrium E∗[�] with the
extinction of the alien prey species must satisfy that r�/b� > r•/b• ≥ r�+1/b�+1 and

W� < 1 ≤ W�⊕1 := G�

( r•
b•
) =

�∑

i=1

g−1
i

( r•/b•
ri /bi

ri
)

Ki
R0,i ,

if it could exist with the asymptotic stability. However, from the strictly decreasing
monotonicity of the function G� and (C8) shown in Appendix C, we find that

W�⊕1 = G�

( r•
b•
) ≤ G�

( r�+1

b�+1

) = G�+1
( r�+1

b�+1

) = W�+1 < Wn < 1.

Therefore such the equilibrium E∗[�] cannot be asymptotically stable even if it exists.
As a result, we obtain the following result:

Lemma 10 When Wn < 1 < R[n]
0 , by the invasion of an alien prey species with

r•/b• > rn/bn, the system transfers to an equilibrium at which the alien prey species
necessarily persists.

From Lemma 3 and Theorem 3, the system transfers to an asymptotically stable
equilibrium E∗[�⊕1] with r�/b� ≥ r•/b• > r�+1/b�+1, if and only if W�⊕1 < 1 <

R[�⊕1]
0 = R[�]

0 + R0,• and

W�+1⊕1 := W�+1 + g−1•
( r�+1/b�+1

r•/b• r•
)

K•
R0,• ≥ 1,

that is, if and only if

1 − g−1•
( r�+1/b�+1

r•/b• r•
)

K•
R0,• ≤ W�+1, (I18)

where we used W�+1⊕1 < R[�⊕1]
0 and W�⊕1 < 1 which always hold as shown in

Appendix C and in the above. The number of extinct native prey species at the equilib-
rium E∗[�⊕1] is n−�. In this case with the condition (I18), the number of extinct native
prey species is maximum at the newly established equilibrium state by the invasion of
such an alien prey species.

Especially in an extremal case with r•/b• > r1/b1, all native prey species become
extinct at the newly established equilibrium state by the invasion of such an alien prey
species if and only if the condition (I18) is satisfied formally for � = 0, that is, if and
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only if

1 − g−1•
( r1/b1
r•/b• r•

)

K•
R0,• ≤ W1 = 0, (I19)

which gives the condition (15). In the other extremal case with rn−1/bn−1 ≥
r•/b• > rn/bn , the equilibrium E∗[n−1⊕1] becomes asymptotically stable if and only
if Wn−1⊕1 < 1 ≤ Wn⊕1, that is, if and only if

1 − g−1•
( rn/bn
r•/b• r•

)

K•
R0,• ≤ Wn, (I20)

where we used Wn−1⊕1 ≤ Wn < 1 as shown in the above with respect to the feature
that W�⊕1 ≤ W�+1. In the case with rn−1/bn−1 ≥ r•/b• > rn/bn , if and only if
the alien prey species satisfies the condition (I20), only the prey species n becomes
extinct at the newly established equilibrium. Otherwise with such an alien species, no
extinction of prey species occurs even at the newly established equilibrium, which has
been already indicated by the condition (16).

By the same arguments, we can consider the condition with which the system
transfers to the asymptotically stable equilibrium E∗[k∗⊕1] by the invasion of an alien
prey species with r•/b• > rk∗/bk∗ ≥ rn/bn . From Lemma 3 and Theorem 3, such a
state transition occurs if and only if Wk∗⊕1 < 1 ≤ Wk∗+1⊕1. Since we have

Wk∗⊕1 = Wk∗ + g−1•
( rk∗/bk∗

r•/b• r•
)

K•
R0,•; Wk∗+1⊕1=Wk∗+1+

g−1•
( rk∗+1/bk∗+1

r•/b• r•
)

K•
R0,•

with rk∗/bk∗ < r•/b•, the necessary and sufficient condition becomes

Wk∗ < 1 − g−1•
( rk∗/bk∗

r•/b• r•
)

K•
R0,• and 1 − g−1•

( rk∗+1/bk∗+1
r•/b• r•

)

K•
R0,• ≤ Wk∗+1.

(I21)

By the alien prey species satisfying the condition (I21)with r•/b• > rn/bn , the number
of extinct native prey species at the newly established equilibrium becomes n − k∗
after the state transition.

From the decreasing monotonicity of g−1 and the increasing monotonicity of the
sequence {Wk}, we now note that the condition (I21) is equivalent to the following:

1 − g−1•
( r j /b j
r•/b• r•

)

K•
R0,• > W j for all j = � + 1, . . . , k∗;

and

1 − g−1•
( r j /b j
r•/b• r•

)

K•
R0,• ≤ W j for all j = k∗ + 1, . . . , n.

(I22)
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Hence every native prey species j satisfying the latter condition of (I22) is extinct at
the newly established equilibrium by the alien prey species with r•/b• > rn/bn .

We note that the condition (I22) is applicable also when rn−1/bn−1 ≥ r•/b• >

rn/bn , as indicated by the result given by (I20). Besides, if no prey species j satisfies
the latter condition of (I22), then no native prey species becomes extinct at the newly
established equilibrium. In such a case, we find that the former condition of (I22) with
j = n coincides with the condition (16). Actually, if the condition (16) is satisfied,
all native species j satisfy the former condition of (I22) because of the decreasing
monotonicity of g−1 and the increasing monotonicity of the sequence {Wk}.

Consequently from those arguments, we can get the following result on an asymp-
totically stable equilibrium newly established by the invasion of an alien prey species
with r•/b• > rn/bn :

Lemma 11 After an alien prey species with r•/b• > rn/bn invades in the system (1)
withWn < 1 < R[n]

0 , the system transfer to an equilibrium at which every native prey
species � satisfying the condition (14) is extinct. If no native prey species � satisfies
the condition (14), the system transfers to the coexistent equilibrium of the predator,
all native prey species, and the alien prey species.

Finally from these results of Lemmas 8–11, we obtain the result of Theorem 5.

Appendix J Proof of Theorem 6

If the predator goes extinct after the extermination of a prey species k at the asymp-
totically stable coexistent equilibrium E∗[n] of (1), then the theorem holds. Thus,
from Theorem 4, we hereafter consider the case where the system transfers to the
equilibrium E∗[n\k] with the persistent predator and the remained n − 1 prey species

after the extermination of a prey species k. Then assume that Wn < 1 < R[n]
0 and

Wn\k < 1 < R
[n\k]
0 .

First we prove the following feature of the equilibrium predator population size
P∗[n\k] at E∗[n\k]:

Lemma 12 P∗[n\k] < rk/bk.

Proof Suppose that P∗[n\k] ≥ rk/bk with k < n. Then, from the former equation of
(9), we have

gi
(
H∗[n\k],i

) = bi P
∗[n\k] ≥ bi

rk
bk

= rk/bk
ri/bi

ri ≥ ri (J23)

for i > k, because of the numbering of prey species as given by (4). On the other hand,
since H∗[n\k],i > 0 and gi

(
H∗[n\k],i

) = bi P∗[n\k] > 0 for i > k from the existence of

E∗[n\k], it must hold that gi
(
H∗[n\k],i

)
< gi (0) = ri , because of the strictly decreasing

monotonicity of gi . This indicates that the inequality (J23) is contradictory to the
existence of P∗[n\k] > 0. Therefore, it does not hold that P∗[n\k] ≥ rk/bk with k < n.
Hence this lemma holds for k < n. When prey species n is exterminated, that is, when
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k = n, we have P∗[n\k] = P∗[n−1] < rn−1/bn−1 from Lemma 2, which matches this
lemma. Consequently this lemma has been proven. �

Next, from the latter equation of (10), the equilibrium predator population sizes P∗[n]
and P∗[n\k] at E∗[n] and E∗[n\k] are given by the root of following equations respectively:

Gn(P
∗[n]) =

n∑

i=1

g−1
i

(
bi P∗[n]

)

Ki
R0,i = 1;

n∑

i=1, �=k

g−1
i

(
bi P∗[n\k]

)

Ki
R0,i = 1. (J24)

The second equation can be rewritten with the function Gn as

Gn(P
∗[n\k]) = 1 + g−1

k

(
bk P∗[n\k]

)

Kk
R0,k . (J25)

Then from Lemma 12, we have

g−1
k

(
bk P∗[n\k]

)

Kk
R0,k >

g−1
k

(
bk · rk/bk

)

Kk
R0,k = g−1

k (rk)

Kk
R0,k = 0

because of the strictly decreasing monotonicity of g−1. Thus, from (J25), we find
that G (P∗[n\k]) > 1. Since the function G (P) is strictly decreasing, continuous, and
differentiable in terms of P > 0, the root of G (P) = 1 is greater than that of G (P) =
q > 1. Thus, from the above equations (J24) and (J25) to determine P∗[n] and P∗[n\k],
we must have P∗[n\k] < P∗[n]. Lastly these arguments prove Theorem 6.

Appendix K Proof of Theorem 7

Since the result of Corollary 5 has shown the result of Theorem 7 in the case where the
successful invasion of an alien prey species does not cause the extinction of any native
prey species, it is sufficient to prove the theorem for the case where the successful
invasion of an alien prey species induces the extinction of some native prey species.
From Theorem 5, we consider the case where r•/b• > rn/bn , since the invasion of an
alien prey species can cause the extinction of some native prey species.

Now suppose that every native prey species � > k∗ become extinct at the newly
established equilibrium state E∗[k∗⊕1], when n − k∗ native prey species go extinct by
the invasion of the alien prey species. Firstly let us consider the case where rk∗/bk∗ <

r•/b•. From Corollary 4, we have P∗[n] < rn/bn and P∗[k∗⊕1] ≥ rk∗+1/bk∗+1 for
k∗ < n, where rn/bn ≤ rk∗+1/bk∗+1 < rk∗/bk∗ < r•/b• since the asymptotically
stable equilibrium E∗[k∗⊕1] with k∗ < n requires the condition that rk∗+1/bk∗+1 �=
rk∗/bk∗ from Corollary 3. Therefore, we find that P∗[n] < rn/bn ≤ rk∗+1/bk∗+1 ≤
P∗[k∗⊕1]. Secondly let us consider the case where rk∗/bk∗ ≥ r•/b• > rk∗+1/bk∗+1 ≥
rn/bn . Also in this case, the same arguments result in the same condition. Hence these
arguments prove the result in Theorem 7 when some native prey species is extinct at
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the newly established equilibrium E∗[k∗⊕1]. As a result, we have proven the first part
of Theorem 7.

By a similar argument, we can prove the second part of Theorem 7. Let us consider
two distinctive cases where r•/b• > rn/bn and r�/b� > rn/bn , when the invasion of
an alien prey species causes the extinction of some native prey species in both cases.
Assume that every native prey species � > k∗ become extinct by the invasion of an
alien prey species with r•/b• > rn/bn , while every native prey species � > k† become
extinct by that of another alien prey species with r�/b� > rn/bn , where the latter case
induces the larger number of the extinctionof native prey species, that is, k† < k∗. From
the numbering for the native prey species by (4) and Corollary 3, we simultaneously
assume that rk∗/bk∗ < rk†/bk† as the mathematical consistency in our modeling. Now
from Corollary 4, we have P∗[k∗⊕1] < rk∗/bk∗ at the newly established equilibrium
E∗[k∗⊕1] by the invasion of the former alien prey species, and P∗

[k†⊕1] ≥ rk†/bk† at the
newly established equilibrium E∗

[k†⊕1] by the invasion of the latter alien prey species.
Therefore we find that P∗[k∗⊕1] < rk∗/bk∗ < rk†/bk† ≤ P∗

[k†⊕1]. Finally this condition
proves the second part of Theorem 7.

Appendix L Proof of Corollary 5

The invasion of an alien prey species satisfying the condition (14) in Theorem 5 for
� = 1 leads the system to the equilibrium E∗[•]. In contrast, we note that sufficiently
small b• must cause no extinction of any native prey species in the system (1). The
condition (16) for such a coexistent equilibrium when r•/b• > rn/bn is rewritten as

c•
δ

b•g−1•
( rn
bn

b•
)

< 1 − Wn . (L26)

Since the function h•(x) := xg−1• (x) is continuous for x > 0 with h•(0) = 0,
the condition (L26), that is, (16) is satisfied for sufficiently small b•. An alien prey
population with such a predation rate cannot contribute to the growth rate of predator
population, so that the alien prey population does not affect the persistence of anynative
prey species by the apparent competition effect. This feature of the b•-dependence on
the persistence of native prey species is clearly seen in the numerical result of Fig. 6.
Hence the range of b• to have the asymptotically stable E∗[•] must have a lower bound,
b• = b−• , at which the asymptotically stable equilibrium switches to E∗[1⊕•] with only
native prey species 1, the alien prey species, and the predator.

Further it is clear that there is a upper bound for the range of b•, b• = b+• , to
have the asymptotically stable E∗[•], since the condition (14) must be satisfied with
r•/b• > r1/b1.Also at the upper boundb• = b+• , the asymptotically stable equilibrium
switches to E∗[1⊕•]. The stability switch to E∗[1⊕•] at the lower and upper bounds follows
the continuity of the condition (14) in terms of b•.

Now from (10), we have

P∗[•] = 1

b•
g•
( δ

c•b•
)
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at E∗[•], which is a continuous function of b• on the above-mentioned finite range. Then
from the above arguments, it holds that P∗[•] → P∗[1⊕•] as b• → b−• +0 or b• → b+• −0.
On the other hand, from Theorem 7, P∗[•] for b• ∈ (b−• , b+• ) is greater than P∗[1⊕•].
Therefore, P∗[•] must take the maximum for a specific value of b• ∈ (b−• , b+• ).
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